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In this class we discussed how to describe the statistical significance of
database search techniques and sequence comparison methods. For this dis-
cussion, all log functions without subscripts are the natural logarithm.

1 Comparison of Database Search Techniques
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A quick summary of some of the results:

e BLAST using the scoring matrix BL50 works the best. BL50 is a
scoring matrix that relies on the assumption that over a short time there
will be local differences, or generally that low-level similarities over a
longer evolutionary time are less likely than high-level similarities over
a short evolutionary time.

e FASTA, SSEARCH perform well with the VTML160 matrix (discussed
in the last lecture).



e BLAST-WU had excellent results, but the statistics that it produced
were inferior to the other methods.

Generally, 90% of evolutionarily related sequences are never found at all,
even with an exact search method. Many of the heuristic methods only lose
2 — 3% more of the evolutionarily related sequences, which is why they are
used so frequently.

1.1 Segmentation

SEG, or “segmentation of sequences by local complexity” (also called mask-
ing or filtering), blocks out low-complexity regions of sequences before the
comparisons begin. This method is not useful for PAM/BLOSUM matrices,
which make relative frequency assumptions uniformly across the length of the
proteins. This method is good for understanding the 3 dimensional structure
or folds in protein comparisons.

Given a window size L (say 12 positions), for every sequential set of 12

amino acids, compute:
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where K is a measure of the complexity of the region, n; is a count of the
number of residues in that window of type i (for all residues 7).

The window is considered low complexity if K < Kiyjgger, and similarly,
the window size L is extended if K < K ptend, Where Kiyigger < Keptend-

The regions that are of low complexity then are not used in the comparison
methods.

2 Statistics of Sequence Comparison
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The scores for particular “matches” need some context:

e How long is the sequence?



e Which method was used in the search?
e How did you find the similar sequences?

e What is the random chance that this score would appear if random
sequences are aligned?

For the final question, it is straightforward to compute the likelihood of a
particular score given a distribution over randomly aligned sequences pulled
from the same distribution as the sequences that are being compared.

For global alignments, the type of distribution is unknown. One method
is to assume a type of distribution and learn the distribution parameters by
a bootstrap method: shuffle the sequence and aligning two random shufflings
some large number of times, and derive the parameters for the distribution
from the sample scores.

For gapped local alignments, it is straightforward to compute z = *5#, or
the number of standard deviations out from the mean u a specific score s is,
given that you have selected a Gaussian model. But the problem is that the
model is not Gaussian. In practice, gapped local alignment is analyzed using
ungapped local alignment methods with a few caveats and modifications.

3 Ungapped Local Alignment

Longest common subsequence (LCS) methods: The E-value for a particular
score can be characterized by the following general equation:

E =logi kmn

where p is the total number of characters, k is the weighting, and m, n
are the length of the two alignments (not the aligned length, but the full
length).

This leads us to consider the extreme value distribution (EVD) to model
the distribution of randomly aligned sequences (see equations later for mo-
tivation). The statistical interpretation of the Normal distribution is that it
is the sum of many IID (independent, identically distributed) random vari-
ables. The statistical interpretation of the EVD is that it the maximum over
many IID random variables (with an arbitrary distribution). Graphically



this means the density curves of the EVD for a particular Gaussian is shifted
to the left and has a slower drop off than the Gaussian on the right. The
EVD was first introduced by Gumbel to describe the frequency of floods.

The distribution of the EVD (double exponential), both unparameterized
and parameterized with v and A:

P(s<xz)=e°
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where A represents the width of the density (corresponding to o, the
standard deviation, in the Gaussian density), and u represents the modal
point (or the characteristic value).

There is a quick mapping from Gaussian parameters to EVD parameters:

where v = é is Fuler’s number.

3.1 Analytical Parameters

For ungapped alignments, the parameters for the EVD can be learned ana-
lytically as follows (from Karlin-Altschul (Dembo)):
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where f(+) is some function of the score for a particular i, j score and the
likelihood of that pair being aligned.

Moreover, they pointed out that the distribution can be estimated as
follows:



P(s>z)=1—e X o kmne ™
Notice that A\ acts as a scaling factor for a scoring matrix:
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then £ multiplies the search space appropriately.
So then the p-value for some score s is:

E(pairs with score > s) = kmne ",

3.2 Bit Scores

If the score is not in bits, then it can easily be converted to bits (and results
from different scoring matrices can be compared, for example):
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3.3 Edge Effects

The problem of edge effects is that alignments might not be made over whole
sequence (this is the problem that arises in global alignment that no end gap
penalties helps to alleviate). Generally, the problem is that m and n are
not infinite although the E-value distribution makes that assumption. The
method that exists to account for this is to rescale m and n to remove the
expected length of a match (in the following, E(I) is the expected length for
a match):

h=m — E(l)
n=mn— E()
E = ke ™ = mn2™"

This method was used in earlier versions of BLAST.



3.4 Complete Alignments

For an ungapped alignment with multiple disjoint high-scoring regions, the
regions can be combined with gaps connecting the regions. For this method,
two different scoring methods have been proposed: Poisson statistics and
sum statistics (Gish, Altschul).

The Poisson statistics greatly exaggerated the significance of the matches,
whereas the sum statistics work better than the Poisson statistics by summing
over the aligned regions and adding penalties for the intermediate gaps, but
still this was not a clean method of scoring matches of this type.

4 Gapped Alignments

In general, the problem of generating statistics for gapped alignments is hard
but possible, although there are no really robust ranking statistics. If the
alignment of two sequences is truly local, gapped alignment has an EVD
distribution also. How can you derive the parameters A and k7 The previous
analytic method is no longer possible since it requires ungapped alignments.
There are three empirical methods used to generate the equivalent parameters
for gapped alignments:

o FEmpirical Simulation: Generate 10,000-1, 000,000 random sequences,
with the same frequency distribution as the database to search. Align
them pairwise, and find the mean and standard deviation of the score
for each of the alignments. Using the mapping above, u, o can be con-
verted to A, u. Notice that there is a single length of original sequence
so there is a single set of parameters for that length.

e Empirical Database Search: The problem with the above method is
that the composition of the samples is fixed, whereas in the real dataset
the composition can vary wildly. Instead of randomly generating the
sequences, randomly pull them from the database being used. Instead
of a single set of parameters, the ;4 and ¢ must be found for each pair
of lengths for the random sequences being aligned.

o Shuffle Sequence: Randomly shuffle the particular sequence, and align
the sequence against a shuffling of itself. The obvious problem is that



the random shuffle will still have a particular composition of amino
acids.

These methods are not used with BLAST1, but are used in and af-
ter BLAST2. The parameters are found empirically only after full Smith-
Waterman is performed on all of the random pairs of aligned sequences.
FASTA uses the empirical database search method and in practice it works
well.

Of course these methods are only pairwise. How can we scale up to the
whole search?

BLAST calculates the FE-value with respect to the length of the en-
tire database, specifically, for N the number of amino acids in a particular
database,

S

Eppast = kNne™

where s is the score in bits of the particular alignment.
FASTA does a similar scaling, but with respect to D, the number of
sequences present in the comparison database:

EFASTA = anme*)‘s

If the average length of the sequences in the database is similar, then the
results of these two ranking methods is very similar. In general, FASTA cares
how big the matching sequence is: the longer the match sequence, the less
significant the match appears. The problem with this assumption in practice
is that the dependency on length does not make sense for genomic data, since
length should not be a factor in the significance of the match.

5 How are the F-scores used in each of the
heuristic search algorithms?

e BLAST1: Found an analytic k, A, and s;; from the user’s chosen score
matrix.

e BLAST2: Found £, A from empirical simulations. Requires that score
matrix be one which has an associated empirically found k, .



BLAST2.2.2: Similar to BLAST2 but with an additional tweak: com-
puted how far empirical k, A was from the ungapped k, A, found using
empirical simulations with same score matrix. The new parameters are
tweaked to account for this discrepancy in the original k, A\, without
any real theoretical justification.

PSI-BLAST: Generates the score matrix on the fly for a fixed &, A.
Specifically, each s;; is chosen in an attempt to achieve the fixed k, A
EVD parameters.

C-WA?: (UCSD) Generates k, A from empirical database search using
a database smaller than the database for the total search.

FASTA: Chooses k, A based on an empirical database search.



